学术交流
当前位置: 首页 >> 学术交流 >> 正文

学术报告-A new Lagrange multiplier approach for constructing positivity/bound preserving schemes

作者:  来源:  编辑:姜滔    时间:2021-10-14    浏览:    

讲座主题:A new Lagrange multiplier approach for constructing positivity/bound preserving schemes

专家姓名:沈捷

工作单位:美国普渡大学

讲座时间:2021年10月26日 16:00-17:00

讲座地点:数学院会议室341

主办单位:烟台大学数学院

内容摘要:

Solutions for a large class of partial differential equations (PDEs) arising from sciences and engineering applications are required to be positive or within a specified bound. It is of critical importance that their numerical approximations preserve the positivity/bound at the discrete level, as violation of the positivity/bound preserving may render the discrete problems ill posed.

I will review the existing approaches for constructing positivity/bound preserving schemes, and then present a new Lagrange multiplier approach for constructing a class of positivity/bound preserving schemes for parabolic type equations. The new approach introduces a space-time Lagrange multiplier to enforce the positivity/bound using the Karush-Kuhn-Tucker (KKT) conditions. We then use a predictor-corrector approach to construct a class of positivity/bound preserving schemes: with a generic semi-implicit or implicit scheme as the prediction step, and the correction step, which enforces the positivity/bound preserving, can be implemented with negligible cost. We shall present some stability/error analysis for our schemes under a general setting, and present ample numerical results to validate the new approach.

主讲人介绍:

沈捷教授于1982年毕业于北京大学计算数学专业, 1983年公派赴法国巴黎十一大学留学,于1987年获得博士学位后赴美国Indiana University从事博士后研究。1991年至2001年先后任美国Pennsylvania State University数学系助理教授,副教授,教授。2002年起任美国普度大学数学系教授,2012年起任普度大学计算与应用数学中心主任。目前担任8个国际杂志的编委。沈捷教授主要从事偏微分方程数值解研究工作,具体研究方向包括谱方法数值分析理论,计算流体,以及计算材料科学。在国际杂志上发表论文200多篇,并有两本专著,其研究结果被国际同行广泛引用,在Google Scholar上被引用逾一万七千次。 他于2009年被聘为教育部长江讲座教授,2017年当选美国数学会Fellow,2020年当选国际工业与应用数学协会(SIAM)Fellow。