学术交流
当前位置: 首页 >> 学术交流 >> 正文

三元名家论坛:A high-order shifted boundary virtual element method for Poisson equations on 2D curved domains

作者:  来源:  编辑:zhangliyu    时间:2024-04-17    浏览:    

讲座主题:A high-order shifted boundary virtual element method for Poisson equations on 2D curved domains

专家姓名:汪艳秋

工作单位:南京师范大学

讲座时间:2024年04月20日10:50-11:20

讲座地点:数学与信息科学学院341

主办单位:烟台大学数学与信息科学学院

内容摘要:

We consider a high-order Virtual Element Method (VEM) for Poisson problems with non-homogeneous Dirichlet boundary condition on 2D domains with curved boundary. The scheme is designed on unfitted polygonal meshes. It borrows the idea of the Shifted Boundary Method (SBM) proposed by Main and Scovazzi (2018) for treating the curved boundary. We prove the stability and the optimal error estimate in energy norm for the proposed method. For the L2 norm, although suboptimal error estimate is proved theoretically, numerical results appear to be optimal. Supporting numerical results are presented.

主讲人介绍:

汪艳秋,南京师范大学数学科学学院院长、教授,博士生导师。2004年于美国德克萨斯A&M大学获得博士学位,2016年起在南京师范大学数学科学学院工作,曾入选国家青年人才计划。研究方向为有限元方法,近期主要关注多边形与多面体网格上数值离散方法的构造、分析、与应用。